TYR Tactical

Archive for the ‘Digitization’ Category

SOFWERX – Trusted Capital AI Virtual Venture Day Starting 24 June 2020

Wednesday, June 17th, 2020

The Office of the Secretary of Defense (OSD) Trusted Capital, in concert with the United States Special Operations Command (USSOCOM), the Joint Artificial Intelligence Center (JAIC), and the Department of Energy (DOE), will host an AI-focused Trusted Capital Virtual Venture Day.

Trusted Capital events are designed to bring together DoD-critical companies and capital providers to align their existing capabilities with national security interests.

The goal is to facilitate funding of companies with critical technology to provide risk mitigation against adversarial influence in supply chains and funding channels.

Trusted Capital maximizes the public-private partnership model. The U.S. government screens capital providers and companies for national security risks prior to offering participation in Venture Days and the Trusted Capital program. Eligible companies are firms offering technologies and capabilities critical to national security and seeking to secure sources of funding in support of the defense industrial base. Eligible capital providers are investment groups that support U.S. national security sectors that align with their investment portfolio.

Approximately 10 qualifying AI companies will deliver their pitches and funding needs to trusted providers of capital weekly over the course of several weeks. If your organization is accepted in Trusted Capital, you will receive an opportunity to prepare a five-minute pitch video with one minute at the end for questions from the capital providers and acquisition community.

This program will be administered on a first-come, first-serve basis for those companies that qualify to participate in the Trusted Capital Marketplace (TCM).

AI sectors of interest:
• Autonomous Vehicles
• Machine Vision and Image Recognition
• Machine Learning
• Robotics and Scale Automation
• Navigation System
• Language Processing and Recognition

Potential participants will undergo the due diligence required to pass a national security review for entrance into the Trusted Capital Venture Day and Trusted Capital Marketplace.

Submission Deadline: 22 June 11:59 PM EST

Visit events.sofwerx.org/trustedcapital to enter.

New 5G Switch Provides 50 Times More Energy Efficiency Than Currently Exists

Saturday, May 30th, 2020

RESEARCH TRIANGLE PARK, N.C. — As 5G hits the market, new U.S. Army-funded research has developed a radio-frequency switch that is more than 50 times more energy efficient than what is used today.

With funding from the Army Research Office, an element of the U.S. Army Combat Capabilities Development Command’s Army Research Laboratory, researchers at The University of Texas at Austin and the University of Lille in France, have built a new component that will more efficiently allow access to the highest 5G frequencies, in a way that increases devices’ battery life and speeds up how quickly users can do things like stream HD media.

Smartphones are loaded with switches that perform a number of duties. One major task is jumping back and forth between different networks and spectrum frequencies: 4G, WiFi, LTE, Bluetooth, etc. The current radio-frequency switches that perform this task are always running, consuming precious processing power and battery life.

“Radio-frequency switches are pervasive in military communication, connectivity and radar systems,” said Dr. Pani Varanasi, division chief, materials science program at ARO. “These new switches could provide large performance advantage compared to existing components and can enable longer battery life for mobile communication, and advanced reconfigurable systems.”

The journal Nature Electronics published the research team’s findings.

“It has become clear that the existing switches consume significant amounts of power, and that power consumed is useless power,” said Dr. Deji Akinwande, a professor in the Cockrell School of Engineering’s Department of Electrical and Computer Engineering who led the research. “The switch we have developed can transmit an HDTV stream at a 100GHz frequency, and that is an achievement in broadband switch technology.”

The new switches stay off, saving battery life for other processes, unless they are actively helping a device jump between networks. They have also shown the ability to transmit data well above the baseline for 5G-level speeds.

Prior researchers have found success on the low end of the 5G spectrum – where speeds are slower but data can travel longer distances. This is the first switch that can function across the spectrum from the low-end gigahertz frequencies to high-end terahertz frequencies that could someday be key to the development of 6G.

The team’s switches use the nanomaterial hexagonal boron nitride, a rapidly emerging nanomaterial from the same family as graphene. The structure of the switch involves a single layer of boron and nitrogen atoms in a honeycomb pattern sandwiched between a pair of gold electrodes. Hexagonal boron nitride is the thinnest known insulator with a thickness of 0.33 nanometers.

The impact of these switches extends beyond smartphones. Satellite systems, smart radios, reconfigurable communications, and Internet of Things, are all examples of potential uses for the switches. In addition, these switches can be realized on flexible substrates making them suitable for Soldier wearable radios and communication systems that can benefit from the improved energy efficiency for longer battery life with faster data speeds as well as other defense technologies.

“This will be very useful for radio and radar technology,” Akinwande said.

This research spun out of a previous project that created the thinnest memory device, also using hBN. Akinwande said sponsors encouraged the researchers to find other uses for the material, and that led them to pivot to RF switches.

In addition to the U.S. Army, support through a Presidential Early Career Award for Scientists and Engineers, the U.S. Office of Naval Research and The National Science Foundation’s Engineering Research Center funded the research. The Texas Nanofabrication Facility partly fabricated the switch and Grolltex, Inc., provided hBN samples.

By U.S. Army CCDC Army Research Laboratory Public Affairs

Samsung Introduces Next Generation of Tactical Mobility with the Galaxy S20 Tactical Edition

Thursday, May 21st, 2020

Mission-ready smartphone solution provides operators with the power to achieve their objectives in any tactical environment.
 

RIDGEFIELD PARK, N.J. – MAY 20, 2020 – Samsung Electronics America, Inc. today introduced the Samsung Galaxy S20 Tactical Edition (TE), a mission-ready smartphone solution tailored to the unique needs of operators in the federal government and Department of Defense (DoD).  With a highly customized software and feature set, the Galaxy S20 TE can operate seamlessly with a range of existing peripherals and supports the requirements of tactical and classified applications, especially those designed to help operators navigate complex terrain, expansive distances, and the potential loss of communication with command units. Galaxy S20 TE also introduces DualDAR architecture, which delivers two layers of data encryption based on the NSA standards to secure up to top-secret level data for classified missions.

“The development of this solution is a result of coordination and feedback received from our Department of Defense customers and partners,” stated Taher Behbehani, Head of the Mobile B2B Division, SVP and General Manager, Samsung Electronics America. “The Galaxy S20 Tactical Edition provides the warfighter with the technology that will give them an edge in the field, while providing their IT teams with an easy-to-deploy, highly secure solution that meets the demands of their regulated environment.”

Galaxy S20 TE offers federal program managers and executive officers an easy to manage and deploy mobile solution that works with a broad range of technologies and is backed by the assurance of the defense-grade Samsung Knox mobility platform. It harnesses the most sought after tools of Samsung’s premium Galaxy devices in a unique, easy-to-use configuration.

Helps Operators Stay Connected in Multi-domain Operations. Galaxy S20 TE easily connects to tactical radios and mission systems, out of the box, ensuring seamless operations. Multi-ethernet capabilities provide dedicated connections to mission systems, while network support for Private SIM, 5G, Wi-Fi 6 and CBRS ensure a connection is maintained throughout multi-domain environments.

Provides complete, accurate real-time situational awareness. Galaxy S20 TE caters to the unique needs of military operators, through customization of numerous device features. A night-vision mode allows the operator to turn display on or off when wearing night vision eyewear, while stealth mode allows them to disable LTE and mute all RF broadcasting for complete off-grid communications. Operators can easily unlock the device screen in landscape mode while it’s mounted to their chest, and quick launch their most commonly used apps at the push of a button.

One Device for All Mission Requirements. When in the field, operators need a lightweight, easy to carry device that doesn’t weigh them down, yet offers the power they need to complete the mission. With its powerful 64-bit Octa-Core processor, Galaxy S20 can support the running of multiple mission applications in the field (ATAK, APASS, KILSWITCH, BATDOK) so operators can access the intelligence they need. Galaxy S20 TE also includes powerful Samsung DeX software, which offers a PC-like experience when connected to a monitor, keyboard, and mouse. With DeX, operators can use the device for completing reports, training or mission planning when in vehicle or back at the base.

Certified and secure for Special Operations. Galaxy S20 TE is built on Samsung Knox, the defense-grade mobile security platform that protects the device from hardware through software layers.  DualDAR architecture further secures the device with two layers of encryption, even when the device is in a powered off or unauthenticated state. This multi-layer, embedded defense system helps Galaxy S20 TE meet the most stringent regulated industry requirements, including NSA’s Commercial Solutions for Classified (CSFC) Component’s List, and Mobile Device Fundamental Protection Profile (MDF PP) as laid out by the National Information Assurance Partnership (NIAP). Galaxy S20 TE comes out of the box approved for use within the Department of Defense (DoD) using the Android 10 Security Technical Implementation Guide (STIG) as laid out by the Defense Information Systems Agency (DISA).

The Samsung Galaxy S20 TE will be available in Q3 2020 through select IT channel partners.  For more information on Galaxy S20 TE, please visit www.samsung.com/TacticalEdition. For more information about Samsung Government, please visit www.samsung.com/us/business/by-industry/government.

ARA – Augmented Reality Command Control Communicate and Coordinate RECON

Thursday, April 16th, 2020

During SHOT Show, Quantico Tactical ran me through several new technologies. The Augmented Reality Command Control Communicate and Coordinate or ARC4 was a special pleasure because I had served in the Air Force with the SME on hand. Nate Sanders was a Combat Controller and is now working for Applied Research Associates, Inc.

I really like ARA’s Augmented Reality technology. In fact, so does the Army who awarded them a contract last year.

Instead of looking down at a map and overlay while orienting it to the ground truth in front of you, ARC4 places the information from ATAK, day or night, within your field of view. Your head is in the battle space where it belongs.

Look at an area and you will see floating icons above targets, friendlies, routes, waypoints, and more in your field of view and they track 360 deg as you scan the horizon.

Below are demonstrations.

This COTS system integrates GPS, accelerometer, gyro, magnetometer, barometric presssure sensor as well as an EO camera. Output is via Day HUD or clipon for Visual Augmentation System, including Optics1’s ECOTI/ECOSI.

Don’t forget, ARC4 Recon is available for government users through Quantico Tactical.

SOFWERX Target Location Device Assessment Event

Tuesday, April 7th, 2020

SOFWERX, in collaboration with USSOCOM PEO-SOF Warrior (PEO-SW), is conducting a Target Location Device Assessment Event designed to acquire and/or develop a device that can be used to effectively observe potential targets at distance, accurately determine the potential target(s) location, and be interoperable with ATAK.

Ground forces require an improved capability to precisely fix-finish known enemies in an operationally relevant scenario. Currently, forces use map data, which is hard to get, or lengthy talk-ons for fixed and rotary wing close air support (CAS). Map data, while useful, is not always updated and cannot be used for personnel or moving targets. Ground systems have precision munitions and ground forces require coordinates with enough fidelity to maximize effectiveness of these precision munitions.

Target Location Device (TLD) is an acquisition project with the objective to streamline developmental efforts and field high accuracy target location technology in a rapid acquisition environment.

Select individuals will be allotted a one-on-one virtual session with USSOCOM to pitch, demonstrate, and/or discuss solutions.

The TLD event will be held on 28 May 2020

Submission Deadline: 04 May 11:59 PM EST

For full details on how to participate, visit events.sofwerx.org/tld.

Army Scientists Create Innovative Quantum Sensor – Covers Entire RF Spectrum

Saturday, March 21st, 2020

ADELPHI, Md. — A quantum sensor could give Soldiers a way to detect communication signals over the entire radio frequency spectrum, from 0 to 100 GHz, said researchers from the Army.

Such wide spectral coverage by a single antenna is impossible with a traditional receiver system, and would require multiple systems of individual antennas, amplifiers and other components.

In 2018, Army scientists were the first in the world to create a quantum receiver that uses highly excited, super-sensitive atoms–known as Rydberg atoms–to detect communications signals, said David Meyer, a scientist at the U.S. Army Combat Capabilities Development Command’s Army Research Laboratory. The researchers calculated the receiver’s channel capacity, or rate of data transmission, based on fundamental principles, and then achieved that performance experimentally in their lab–improving on other groups’ results by orders of magnitude, Meyer said.

“These new sensors can be very small and virtually undetectable, giving Soldiers a disruptive advantage,” Meyer said. “Rydberg-atom based sensors have only recently been considered for general electric field sensing applications, including as a communications receiver. While Rydberg atoms are known to be broadly sensitive, a quantitative description of the sensitivity over the entire operational range has never been done.”

To assess potential applications, Army scientists conducted an analysis of the Rydberg sensor’s sensitivity to oscillating electric fields over an enormous range of frequencies–from 0 to 10^12 Hertz. The results show that the Rydberg sensor can reliably detect signals over the entire spectrum and compare favorably with other established electric field sensor technologies, such as electro-optic crystals and dipole antenna-coupled passive electronics.

“Quantum mechanics allows us to know the sensor calibration and ultimate performance to a very high degree, and it’s identical for every sensor,” Meyer said. “This result is an important step in determining how this system could be used in the field.”This work supports the Army’s modernization priorities in next-generation computer networks and assured position, navigation and timing, as it could potentially influence novel communications concepts or approaches to detection of RF signals for geolocation.

In the future, Army scientists will investigate methods to continue to improve the sensitivity to detect even weaker signals and expand detection protocols for more complicated waveforms.

The Journal of Physics B published the research, “Assessment of Rydberg atoms for wideband electric field sensing,” in its special issue on interacting Rydberg atoms. Army scientists David H. Meyer, Kevin C. Cox and Paul D. Kunz led this research, as well as Zachary A. Castillo from the University of Maryland. This work was supported by the Defense Advanced Research Projects Agency.

By US Army CCDC Army Research Laboratory Public Affairs

Army Modernizes Its Biometric Processing Capabilities

Sunday, February 16th, 2020

ABERDEEN PROVING GROUND, Md. — U.S. Army Soldiers patrolling critical checkpoints overseas will have an improved biometrics tool to help identify persons of interest in real time.

Army Futures Command’s Command, Control, Communications, Computers, Cyber and Intelligence, Surveillance and Reconnaissance (C5ISR) Center has developed and delivered software that will enable Program Executive Office Intelligence, Electronic Warfare and Sensors (PEO IEW&S) to modernize the Army’s 20-year-old biometric processing capabilities.

The Biometrics Automated Toolset — Army (BAT-A) is a handheld device used by deployed Soldiers to collect, process and reference biometric identity information — such as iris, fingerprint and facial images — during force protection screenings.

With the system deployed to U.S. joint forces around the world and more than one million entries saved in the DoD’s Automated Biometrics Identification System, it is important to migrate BAT-A to a database that will meet the government’s new electronic biometric transmission specifications, explained Brian D. Likens, product lead for the Biometrics Collection Capability at PEO IEW&S’ Project Manager Department of Defense Biometrics (PM DoD Biometrics).

“We asked the C5ISR Center to make the database more efficient and useful for tomorrow’s Soldier. To do this, they restructured the data to comply with future standards and modern architecture practices,” Likens said.

The new database software architecture will improve the overall speed and functionality of the tool so Soldiers can access better filtered information, noted Will Daddario, a software engineer with the C5ISR Center.

“In the past, superfluous information had the ability to make its way up and into the BAT-A database. That will not happen anymore. You are now going to have a database with improved integrity that will be easier to use,” Daddario said.

The architecture will also make future software development work easier.

“Previously, all database relationships were performed by the application. Our new database has all of these relationships built in, so when you make a change in one area, it propagates through the whole database,” Daddario said.

The C5ISR Center delivered a data conversion tool with the architecture and plans to deliver data migration and filter tools in Fiscal Year 2021 before helping the PM migrate the data. The Center is also slated to support PM DoD Biometrics throughout the development of the Next Generation Biometric Collection Capability.

“The need for accurate and timely data is vital to the protection of our warfighters in support of Multi-Domain Operations. This updated database will make it more efficient for warfighters to collect, identify and neutralize the enemy,” said Col. Senodja “Frank” Sundiata-Walker, project manager for PM DoD Biometrics.

By Douglas Scott






Rare-Earth Element Material Could Produce World’s Smallest Transistors

Thursday, February 13th, 2020

RESEARCH TRIANGLE PARK, N.C. — A material from a rare earth element, tellurium, could produce the world’s smallest transistor, thanks to an Army-funded project.

Computer chips use billions of tiny switches called transistors to process information. The more transistors on a chip, the faster the computer.

A project at Purdue University in collaboration with Michigan Technological University, Washington University in St. Louis, and the University of Texas at Dallas, found that the material, shaped like a one-dimensional DNA helix, encapsulated in a nanotube made of boron nitride, could build a field-effect transistor with a diameter of two nanometers. Transistors on the market are made of bulkier silicon and range between 10 and 20 nanometers in scale.

“This research reveals more about a promising material that could achieve faster computing with very low power consumption using these tiny transistors,” said Joe Qiu, program manager for the Army Research Office, an element of the U.S. Army Combat Capabilities Development Command’s Army Research Laboratory, which funded this work. “That technology would have important applications for the Army.”

The Army-funded research is published in the journal Nature Electronics. The Army is focused on integration, speed and precision to ensure the Army’s capability development process is adaptable and flexible enough to keep pace with the rate of technology change.

“This tellurium material is really unique. It builds a functional transistor with the potential to be the smallest in the world,” said Dr. Peide Ye, Purdue’s Richard J. and Mary Jo Schwartz Professor of Electrical and Computer Engineering.

One way to shrink field-effect transistors, the kind found in most electronic devices, is to build the gates that surround thinner nanowires. These nanowires are protected within nanotubes.

Ye and his team worked to make tellurium as small as a single atomic chain and then build transistors with these atomic chains or ultrathin nanowires.

They started off growing one-dimensional chains of tellurium atoms, and were surprised to find that the atoms in these one-dimensional chains wiggle. These wiggles were made visible through transmission electron microscopy imaging performed at the University of Texas at Dallas and at Purdue.

“Silicon atoms look straight, but these tellurium atoms are like a snake. This is a very original kind of structure,” Ye said.

The wiggles were the atoms strongly bonding to each other in pairs to form DNA-like helical chains, then stacking through weak forces called van der Waals interactions to form a tellurium crystal.

These van der Waals interactions set apart tellurium as a more effective material for single atomic chains or one-dimensional nanowires compared with others because it’s easier to fit into a nanotube, Ye said.

Because the opening of a nanotube cannot be any smaller than the size of an atom, tellurium helices of atoms could achieve smaller nanowires and, therefore, smaller transistors.

The researchers successfully built a transistor with a tellurium nanowire encapsulated in a boron nitride nanotube. A high-quality boron nitride nanotube effectively insulates tellurium, making it possible to build a transistor.

“Next, the researchers will optimize the device to further improve its performance, and demonstrate a highly efficient functional electronic circuit using these tiny transistors, potentially through collaboration with ARL researchers,” Qiu said.

In addition to the Army Research Office, the National Science Foundation, Air Force Office of Scientific Research and the Defense Advanced Research Projects Agency partly funded the work.

By U.S. Army CCDC Army Research Laboratory Public Affairs