GORE

Archive for the ‘Disruptive Tech’ Category

SOFWERX – Science and Technology Small Business Innovation Research

Wednesday, September 25th, 2019

Like all commands, USSOCOM has unique requirements and it needs industry’s help solving them. The SBIR program is an opportunity for small businesses to conduct federally funded research.

See the list of topics and instructions at www.acq.osd.mil/osbp/sbir/solicitations. For additional details, visit www.sofwerx.org/sbir.

The event will be held at SOFWERX in Tampa, 19 – 20 November. Submit by 23 October 2019.

Shape-shifting Robots Built from ‘Smarticles’ Could Navigate Army Operations

Monday, September 23rd, 2019

RESEARCH TRIANGLE PARK, N.C. — A U.S. Army project took a new approach to developing robots — researchers built robots entirely from smaller robots known as “smarticles,” unlocking the principles of a potentially new locomotion technique.

Researchers at Georgia Institute of Technology and Northwestern University published their findings in the journal Science Robotics (see related links below).

The research could lead to robotic systems capable of changing their shapes, modalities and functions, said Sam Stanton, program manager, complex dynamics and systems at the Army Research Office, an element of U.S. Army Combat Capabilities Development Command’s Army Research Laboratory, the Army’s corporate research laboratory.

“For example, as envisioned by the Army Functional Concept for Maneuver, a robotic swarm may someday be capable of moving to a river and then autonomously forming a structure to span the gap,” he said.

The 3D-printed smarticles — short for smart active particles — can do just one thing: flap their two arms. But when five of these smarticles are confined in a circle, they begin to nudge one another, forming a robophysical system known as a “supersmarticle” that can move by itself. Adding a light or sound sensor allows the supersmarticle to move in response to the stimulus — and even be controlled well enough to navigate a maze.

The notion of making robots from smaller robots — and taking advantage of the group capabilities that arise by combining individuals — could provide mechanically based control over very small robots. Ultimately, the emergent behavior of the group could provide a new locomotion and control approach for small robots that could potentially change shapes.

“These are very rudimentary robots whose behavior is dominated by mechanics and the laws of physics,” said Dan Goldman, a Dunn Family Professor in the School of Physics at the Georgia Institute of Technology and the project’s principal investigator. “We are not looking to put sophisticated control, sensing and computation on them all. As robots become smaller and smaller, we’ll have to use mechanics and physics principles to control them because they won’t have the level of computation and sensing we would need for conventional control.”

The foundation for the research came from an unlikely source: a study of construction staples. By pouring these heavy-duty staples into a container with removable sides, former doctoral student Nick Gravish — now a faculty member at the University of California San Diego — created structures that would stand by themselves after the container’s walls were removed.

Shaking the staple towers eventually caused them to collapse, but the observations led to a realization that simple entangling of mechanical objects could create structures with capabilities well beyond those of the individual components.

“Dan Goldman’s research is identifying physical principles that may prove essential for engineering emergent behavior in future robot collectives as well as new understanding of fundamental tradeoffs in system performance, responsiveness, uncertainty, resiliency and adaptivity,” Stanton said.

The researchers used a 3D printer to create battery-powered smarticles, which have motors, simple sensors and limited computing power. The devices can change their location only when they interact with other devices while enclosed by a ring.

“Even though no individual robot could move on its own, the cloud composed of multiple robots could move as it pushed itself apart and shrink as it pulled itself together,” Goldman said. “If you put a ring around the cloud of little robots, they start kicking each other around and the larger ring — what we call a supersmarticle — moves around randomly.”

The researchers noticed that if one small robot stopped moving, perhaps because its battery died, the group of smarticles would begin moving in the direction of that stalled robot. The researchers learned to control the movement by adding photo sensors to the robots that halt the arm flapping when a strong beam of light hits one of them.

“If you angle the flashlight just right, you can highlight the robot you want to be inactive, and that causes the ring to lurch toward or away from it, even though no robots are programmed to move toward the light,” Goldman said. “That allowed steering of the ensemble in a very rudimentary, stochastic way.”

In future work, Goldman envisions more complex interactions that use the simple sensing and movement capabilities of the smarticles. “People have been interested in making a certain kind of swarm robots that are composed of other robots,” he said. “These structures could be reconfigured on demand to meet specific needs by tweaking their geometry.”

Swarming formations of robotic systems could be used to enhance situational awareness and mission-command capabilities for small Army units in difficult-to-maneuver environments like cities, forests, caves or other rugged terrain.

The research project also received funding from National Science Foundation.

robotics.sciencemag.org/content/4/34/eaax4316

www.army.mil/futures

www.army.mil/ccdc

www.arl.army.mil

Story by U.S. Army CCDC Army Research Laboratory Public Affairs

Photos by Rob Felt of Georgia Tech

Army Research Looks at Pearls for Clues on Enhancing Lightweight Armor for Soldiers

Tuesday, September 17th, 2019

RESEARCH TRIANGLE PARK, N.C. — Round, smooth and iridescent, pearls are among the world’s most exquisite jewels; now, these gems are inspiring a U.S. Army research project to improve military armor.

By mimicking the outer coating of pearls (nacre, or as it’s more commonly known, mother of pearl), researchers at University at Buffalo, funded by the Army Research Office (ARO), created a lightweight plastic that is 14 times stronger and eight times lighter (less dense) than steel and ideal for absorbing the impact of bullets and other projectiles.


Photo Credit: Shutterstock

ARO is an element of the U.S. Army Combat Capabilities Development Command’s Army Research Laboratory.

The research findings are published in the journal ACS Applied Polymer Materials, and its earlier publication in J. Phys. Chem. Lett.

“The material is stiff, strong and tough,” said Dr. Shenqiang Ren, professor in the Department of Mechanical and Aerospace Engineering, a member of University of Buffalo’s RENEW Institute, and the paper’s lead author. “It could be applicable to vests, helmets and other types of body armor, as well as protective armor for ships, helicopters and other vehicles.”


Photo Credit: Courtesy University at Buffalo

The bulk of the material is a souped-up version of polyethylene (the most common plastic) called ultrahigh molecular weight polyethylene, or UHMWPE, which is used to make products like artificial hips and guitar picks.

When designing the UHMWPE, the researchers studied mother of pearl, which mollusks create by arranging a form of calcium carbonate into a structure that resembles interlocking bricks. Like mother of pearl, the researchers designed the material to have an extremely tough outer shell with a more flexible inner backing that’s capable of deforming and absorbing projectiles.

“Professor Ren’s work designing UHMWPE to dramatically improve impact strength may lead to new generations of lightweight armor that provide both protection and mobility for Soldiers,” said Dr. Evan Runnerstrom, program manager, materials design, ARO. “In contrast to steel or ceramic armor, UHMWPE could also be easier to cast or mold into complex shapes, providing versatile protection for Soldiers, vehicles, and other Army assets.”

This is what’s known as soft armor, in which soft yet tightly woven materials create what is essentially a very strong net capable of stopping bullets. KEVLAR is a well-known example.

The material the research team developed also has high thermal conductivity. This ability to rapidly dissipate heat further helps it to absorb the energy of bullets and other projectiles.

The team further experimented with the UHMWPE by adding silica nanoparticles, finding that tiny bits of the chemical could enhance the material’s properties and potentially create stronger armor.

“This work demonstrates that the right materials design approaches have the potential to make big impacts for Army technologies,” Runnerstrom said.

By U.S. Army CCDC Army Research Laboratory Public Affairs

US Army Selects True Velocity Composite-Cased Ammunition For Next Generation Squad Weapon

Friday, September 6th, 2019

GARLAND, TX – True Velocity composite-cased ammunition has been selected for the U.S. Army’s Next Generation Squad Weapon (NGSW) modernization program. True Velocity’s 6.8mm composite-cased cartridge was submitted as part of an overall NGSW weapon system in partnership with General Dynamics Ordnance and Tactical Systems and firearm manufacturer Beretta Defense Technologies.

True Velocity’s proprietary 6.8mm case design will provide end users with significant logistical and operational advantages over traditional brass-cased ammunition, including substantially increased effective range and muzzle energy, drastic reduction in cartridge weight and enhanced accuracy. The combination of True Velocity’s ammunition with the General Dynamics OTS weapon submission results in a state-of-the-art weapon system capable of long-range lethality, short recoil impulse, significant ballistic improvements and enhanced operational effectiveness for the soldier.

“True Velocity’s 6.8mm composite case design produces a level of performance, consistency and efficiency never before seen in small arms ammunition,” said Chris Tedford, president and chief operating officer for True Velocity. “Combining True Velocity’s innovation and technology with the expertise of General Dynamics OTS and Beretta results in a weapon system solution that exceeds NGSW requirements and provides the U.S. Army with a definitive edge on the field of battle.”

 

US Army Selects Three Companies To Vie For Next Generation Squad Weapons to Replace M249 and M4

Friday, August 30th, 2019

Last night, the Army announced the three companies which will proceed to Phase 2 of the Next Generation Squad Weapons Program. This solicitation is a Prototype Project Opportunity Notice (PPON), a Other Transaction Agreement under Section 804 Authority.

The PPON called for each vendor to develop two weapon variants under the NGSW program and 6.8 millimeter ammunition common to both weapons. This is NOT the 6.8 SPC cartridge evaluated by USSOCOM in the early 00s, but rather more akin to 270 WSM.

The three companies selected are:
W15QKN-19-9-1024 – General Dynamics-OTS Inc. – Williston, VT
W15QKN-19-9-1025 – AAI Corporation Textron Systems – Hunt Valley, MD
W15QKN-19-9-1022 – Sig Sauer Inc. – Newington, NH

Although the Army has tried over the years to find a replacement for the M-16 family of weapons, which the M4A1 Carbine is the latest iteration of, none have been successful. Each and every time, the Army has found that the candidate weapons did not result in a great enough improvement in lethality to replace the status quo. This time, the Army called a new effect on target, driving the development of both cartridge and weapon.

Specifically, the Army is seeking a Next Generation Squad Weapon-Rifle (NGSW-R) and Next Generation Squad Weapon-Automatic Rifle (NGSW-AR). The NGSW-R is the planned replacement for the M4/M4A1 Carbine and the NGSW-AR is the planned replacement for the M249 Squad Automatic Weapon (SAW) in the Automatic Rifleman Role in the Close Combat Force.

According to the solicitation, the duration for each prototype OTA is estimated to be up to eight years. The first 27 months will be for prototyping the NGSW-R, NGSW-AR, and ammunition. Following this prototyping effort, there may be additional iterative prototyping efforts for the NGSW-R, NGSW-AR, and ammunition. These iterative prototyping efforts will each have separate durations and will occur within the eight year duration.
Furthermore, in accordance with 10 U.S.C. 2371b(f), and upon a determination that the prototype project (or any subsequent iterative prototyping efforts) was successfully completed under the competitively awarded OTA(s), a follow-on production contract(s) or OTA(s) may be awarded without the use of competitive procedures.

Because of the duration of the OTA, and that prototype OTA will undergo two prototype test events including Soldier Touch Points, they are asking for a lot more weapons and ammunition than in the current NGSAR PON. Deliverables for each prototype OTA include 53 NGSW-R weapons, 43 NGSW-AR weapons, 845,000 rounds of ammunition, spare parts, test barrels, tools/gauges/accessories, engineering support, and iterative prototyping efforts as defined in the Statement of Work.
The follow-on production award(s) is planned to be an Indefinite Delivery / Indefinite Quantity Federal Acquisition Regulation (FAR) based contract with Firm Fixed Price Delivery Orders up to ten years or a fixed amount OTA up to ten years. The production award(s) may include 250,000 total weapons system(s) (NGSW-R, NGSW-AR, or both), 150,000,000 rounds of ammunition, spare parts, tools/gauges/accessories, and engineering support. The value of this follow-on production award(s) is estimated to be $10M in the first year and estimated $150M per year at the higher production rates.

GD comes in partnered with True Velocity ammunition and their polymer case design. However, the ammunition for this program features an entirely new case and is called the True Velocity Composite Munition.

Additionally, we hear that GD submitted a bullpup carbine, which several sources have claimed is what the Marine Corps hopes to get from NGSW. Considering the 6.8mm requirement, rumors that they are using the Desert Tech MDR seem like a good bet. Update: it’s not the MDR, but rather a new bullpup design.

AAI Textron is seen by many as the government solution as their weapon and Case Telescoping technology has been funded for years under the Lightweight Small Arms Technology program.

It is the most radical departure of the three from currently fielded weapons. This is a video of their technology demonstrator shown at a recent industry meeting.

During SOFIC, SIG SAUER exhibited their Next Gen solution. They are producing the weapons and ammunition themselves.

Despite the ammo case’s three component construction this looks to be the lowest risk design.

This program is moving along very quickly considering vendors just delivered prototypes to the government at the end of May.

For additional information on the actual requirements, check out this story we posted in January.

Army Showcases New Ground-Based PNT, Electronic Warfare Tech

Tuesday, August 27th, 2019

ABERDEEN PROVING GROUND, Md. — The Army is advancing its ground-based precision navigation and timing, or PNT, technology to counter spoofing threats and improve operations in a multi-domain environment.

While GPS continues to be the “gold standard” for PNT capabilities, it can be disrupted from a number of frequency interferences such as weather, and man-made or natural terrain, said Col. Nick Kioutas, the PNT project manager.

Near-peer competitors have also demonstrated an ability to “spoof” current GPS technologies. Spoofing can generate position and timing inaccuracies on a battlefield, he said Friday at a media event hosted by Program Executive Office Intelligence, Electronic Warfare and Sensors, or PEO IEW&S.

The Army has taken a layered approach to ensure accurate position and timing data, he said. This approach includes the integration of non-radio frequency technologies on the battlefield, such as inertial-based navigation systems, chip-embedded atomic clocks, and Soldier-worn or vehicle-mounted odometers.

For example, industry officials are currently developing and testing a boot-sensor prototype that tracks a Soldier’s rate of movement, he said.

“It is like a pedometer,” Kioutas said. “If you knew you were walking at a certain pace and all of a sudden your system jumped a kilometer — you know you’re being spoofed.”

The Army also looks to secure access to alternative sources of PNT data through other GPS networks. Program officials have also considered the use of anti-jam antennas on vehicles to ensure access to GPS and PNT signals, Kioutas said.

“Our systems will integrate all these data sources to determine which one we can trust the most,” he said. “If our GPS is spoofed, we can look at our inertial navigation system [or other layered systems], and compare it to one of these alternative signals” to get accurate PNT data.

ELECTRONIC WARFARE

Along with improved PNT capabilities, PEO IEW&S is currently developing an Electronic Warfare Planning and Management Tool, or EWPMT, to manage and control electronic warfare assets in support of unified land operations.

Through the EWPMT, the Army can now visually synergize its EW attack, targeting, and surveillance capabilities to enable the maneuverability of forces. The tool also improves spectrum management operations and assists with the intelligence-gathering process.

Operators can streamline the process between the EWPMT and fires support, in addition to being able to configure their system to generate automated responses to a variety of signals or alerts, officials said.

Once a EWPMT system is triggered, the program will initiate its automated workflow, often distributing information throughout a tactical operations center. Depending on the engagement, operators can initiate a fire mission and provide tactical graphics for support.

“Operational units can now visualize the electromagnetic spectrum,” said Lt. Col. Jason Marshall, product manager for Electronic Warfare Integration.

“EWPMT is the commander’s primary tool to integrate multi-domain operations into their military decision-making process,” he added.

While still under development — EWPMT increment one, capability drop three — is leveraging user feedback to allow EWPMT to support the electronic warfare officer’s techniques, tactics, and procedures, Marshall said. A pool of electronic warfare Soldiers and electromagnetic spectrum managers, or 25Es, from across the Army are involved in the program.

Instead of waiting for EW to become an official part of the targeting process, program officials are trying to get ahead of the curve to fulfill a future requirement, said Capt. Daniel J. Nicolosi, EWPMT assistant product manager.

Currently, EW operators “have nothing,” added Chief Warrant Officer 2 Will Flanagan, senior electronic warfare targeting officer, who is assigned to the operations group at the National Training Center at Fort Irwin, California.

As an operator, Flanagan is highly involved in the EWPMT’s ongoing developmental process.

“With the EWPMT in front of me, I can show the commander where we’re at, and what we can do,” he said. “This will give us that spot on the TOC floor. This is the first tool to allow us to do our jobs.”

Future iterations of the EWPMT program, officials said, will focus on pacing the threat’s capabilities within a disconnected, intermittent, and latent environment. In turn, the program will help refine the Army’s ability to conduct cyberspace electromagnetic activities in support of multi-domain operations and enable the Army to fight and win on a complex battlefield.

VMAX

For the EWPMT to be effective, it relies on fielded communications sensors and other EW transmission devices.

The Versatile Radio Observation and Direction, or VROD, Modular Adaptive Transmission system, known as VMAX, have already been fielded to meet mission requirements.

“VMAX is a lightweight man-portable electronics support and offensive electronic attack system. It is used to find, monitor, locate, and jam RF emitters in real time during tactical operations,” said Ken Gilliard, team lead of the Rapid System Applications Team, which falls under the Command, Control, Communications, Computers, Cyber, Intelligence, Surveillance, and Reconnaissance Center, or C5ISR.

“Its purpose is to create that advantage in the electromagnetic spectrum to provide Soldiers a window to maneuver on the battlefield,” he added.

When VMAX is operating in a support capability, operators can monitor the electromagnetic environment and determine what frequencies an adversary is operating on. Further, Soldiers can use multiple VMAX systems to geo-locate a signal, he said.

Similarly, if VMAX is supporting offensive EW capabilities, it can be used to jam or interfere with the signal within specific frequencies.

VMAX is a self-contained, battery-powered device, which weighs approximately 25-30 pounds, Gilliard said. Soldiers can tether VMAX to a vehicle, a building, or some air platforms. The device can be remotely operated and configured with a wide range of antennas to fulfill mission requirements.

The Army currently owns more than 200 VMAX nodes and 100 VROD nodes, he added. Majority of these devices are already deployed around the globe, many of them supporting operations in Europe and the Middle East.

Story by Devon L. Suits, Army News Service
Illustration by Justin Rakowski
Photo by 1st Lt. Jordan Linder

Army Awards Laser Weapon System Contract

Saturday, August 10th, 2019

REDSTONE ARSENAL, Ala. — The U.S. Army issued a contract award to accelerate the rapid prototyping and fielding of its first combat-capable laser weapon system.

This prototype will deliver 50 kilowatt (kW)-class lasers on a platoon of four Stryker vehicles in Fiscal Year 2022, supporting the Maneuver-Short Range Air Defense (M-SHORAD) mission. The directed energy M-SHORAD capability is intended to protect maneuvering Brigade Combat Teams from unmanned aerial systems (UAS), rotary-wing aircraft, and rockets, artillery and mortar (RAM).

“The time is now to get directed energy weapons to the battlefield,” said LTG L. Neil Thurgood, Director of Hypersonics, Directed Energy, Space and Rapid Acquisition. “The Army recognizes the need for directed energy lasers as part of the Army’s modernization plan. This is no longer a research effort or a demonstration effort. It is a strategic combat capability, and we are on the right path to get it in Soldiers’ hands.”

High energy lasers engage at the speed of light and provide a solution to a constantly evolving threat space, while reducing the logistics trail associated with conventional kinetic weapon systems. In May 2019, the Army approved a new strategy for accelerating the rapid prototyping and fielding of a variety of directed energy weapons to enable Army modernization.

As the first step in delivering prototypes with residual combat capability, the Army Rapid Capabilities and Critical Technologies Office (RCCTO) has selected two vendors to build the directed energy M-SHORAD mission prototypes in order to foster competition and stimulate the industrial base for directed energy capabilities. Those vendors, Northrop Grumman and Raytheon, are subcontractors in an Other Transaction Authority (OTA) agreement between the Army and Kord Technologies.

Under the OTA award action, issued on July 26 in the amount of $203 million, Kord has teamed with Northrop Grumman and Raytheon to develop the competing prototypes with support from General Dynamics Land Systems, which makes the Stryker, for integration work. Under the terms of the contract, the two laser vendors have approximately one year to produce the required laser subsystems, integrate them onto the Stryker platform, and complete a competitive performance checkout leading into a range demonstration against various threats.

After the Army evaluates the results, it plans to purchase three additional laser-equipped Strykers, for a total of four prototype vehicles that would be fielded to an operational M-SHORAD platoon in Fiscal Year 2022. The OTA award has the potential to increase to $490 million for the delivery of the four prototypes.

The directed energy M-SHORAD prototypes are part of the progression of an Army technology maturation initiative known as the Multi-Mission High Energy Laser (MMHEL).

“Both the Army and commercial industry have made substantial improvements in the efficiency of high energy lasers — to the point where we can get militarily significant laser power onto a tactically relevant platform,” said Dr. Craig Robin, RCCTO Senior Research Scientist for Directed Energy Applications. “Now, we are in position to quickly prototype, compete for the best solution, and deliver to a combat unit.”

The Army is also welcoming participation from additional vendors who were not selected for the OTA awards, but desire to compete for the same M-SHORAD requirement and timeline using their own internal research and development funding.

In a related effort, the Army is also adapting its High Energy Laser Tactical Vehicle Demonstrator (HEL-TVD) system into a prototype program order to increase its combat effectiveness and speed up its delivery to Soldiers.

The Army will adjust the current HEL-TVD, a 100 kW-class laser system integrated on a Family of Medium Tactical Vehicles platform developed by Dynetics and subcontractor Lockheed Martin. Under the new directed energy strategy, the Army is leveraging progress made in that effort in order to merge the HEL-TVD with similar technologies in development by the Navy and the Office of the Secretary of Defense.

This partnership will allow the services to achieve a higher power system, of approximately 250-300 kW-class, that can protect sites from RAM and UAS as well as more stressing threats — significantly increasing the warfighting capability being transitioned on the original timeline. The Army’s goal is to deliver four such prototype lasers integrated on tactical vehicles, for a capability known as High Energy Laser-Indirect Fire Protection Capability (HEL-IFPC), to a platoon by Fiscal Year 2024.

“By teaming with the other services and our industry partners, we will not only save resources, but exponentially increase the power level and get a better system to Soldiers faster,” Thurgood said.

The Army RCCTO, headquartered at Redstone Arsenal, Ala., is chartered to develop rapid prototypes and field residual combat capabilities. Its current focus areas are hypersonics and directed energy.

By Claire Heininger, U.S. Army

SOFWERX Novel Passive sUAS Detection and/or Tracking System

Friday, August 9th, 2019

What does 5 days, drones and $120K have in common? They all add up to SOFWERX’ fastest prize challenge to date. Submit your novel passive solution to detect and/or track sUAS 14 August at teamwerx.org/detect for your chance to win!.